A Data-driven Bidding Model for a Cluster of Price-responsive Consumers of Electricity

Javier Saez-Gallego Juan M. Morales Marco Zugno Henrik Madsen

Technical University of Denmark

Nov 3rd, 2015

Motivation

- Price-responsive units (households)
- Too small to participate in the Wholesale electricity market

Results

Motivation

The Bid

Price

The bid represents the behavior of the aggregated pool in the market.

Parameters θ of the bid:

- Marginal utility (*a*_{b,t})
- Pick-up and drop-off limits (r_t^u, r_t^d) (equivalent to ramp limits)
- Maximum and minimum power consumption $(\overline{P}_t, \underline{P}_t)$

Motivation ⊙	Estimating The Bid ○●○○○	Solution Method	Results
The Bid			

- The energy assigned to each block is *x*_{bt}
- And the total estimated load as $x_t^{tot} = \underline{P}_t + \sum_{b \in \mathcal{B}} x_{b,t}$

$$\max_{x_{b,t}} \sum_{t \in \mathcal{T}} \left(\sum_{b \in \mathcal{B}} a_{b,t} x_{b,t} - \text{price}_{t} \sum_{b \in \mathcal{B}} x_{b,t} \right)$$

Subject to

$$-r_{l}^{d} \leq x_{l}^{tot} - x_{l-1}^{tot} \leq r_{l}^{u} \qquad t \in \mathcal{T}_{-1}$$
$$0 \leq x_{b,t} \leq \frac{\overline{P}_{t} - \underline{P}_{t}}{B} \qquad b \in \mathcal{B}, t \in \mathcal{T}$$

Motivation	Estimating The Bid	Solution Method	Results
	00000		
The Bid			

- The energy assigned to each block is *x*_{bt}
- And the total estimated load as $x_t^{tot} = \underline{P}_t + \sum_{b \in \mathcal{B}} x_{b,t}$

$$\max_{\boldsymbol{x}_{b,t}} \sum_{t \in \mathcal{T}} \left(\sum_{b \in \mathcal{B}} a_{b,t} \boldsymbol{x}_{b,t} - \text{price}_{t} \sum_{b \in \mathcal{B}} x_{b,t} \right)$$

Subject to

$$-r_{t}^{cl} \leq x_{t}^{tot} - x_{t-1}^{tot} \leq r_{t}^{u} \qquad t \in \mathcal{T}_{-1}$$
$$0 \leq x_{b,t} \leq \frac{\overline{P}_{t} - \underline{P}_{t}}{B} \qquad b \in \mathcal{B}, t \in \mathcal{T}$$

Motivation	Estimating The Bid	Solution Method	Results
	00000		

The Bid

Estimate the parameters of the bid using historical data. The parameters of the bid depend linearly on external factors (i.e., $2 = 2^{0} + \sum_{n=1}^{\infty} a^{n} Z_{n}$)

)

Time	Price	Load	External Info.
t ₁	price ₁	x ₁ ^{meas}	Z ₁
t ₂	price ₂	x ₂ ^{meas}	Z2

V	lo	tiv	/ati	

The Bid

Estimate the parameters of the bid using historical data. The parameters of the bid depend linearly on external factors (i.e., $a_{b,t} = a_b^0 + \sum_{i \in T} \alpha_i^a Z_{i,t}$)

Time	Price	Load	External Info.
t ₁	price ₁	x ₁ ^{meas}	z ₁
t ₂	price ₂	x ₂ ^{meas}	Z2

Estimation problem: inverse optimization and bilevel programming

Upper-level problem

Μ	oti	iva	ti	

Upper-level problem

Parameter estimation

$$\underset{x,\theta}{\text{Minimize }} \sum_{t \in \mathcal{T}} w_t \Big| x_t^{tot} - x_t^{meas} \Big|$$

subject to

$a_{b,t} \ge a_{b+1,t}$ $b \in \mathcal{B}, t \in \mathcal{T}$ KKT conditions of lower-level problem

Practical considerations:

- Remove the absolute value
- wt: weights, forgetting factor
- Robust constraints to ensure feasibility
- Lasso regularization

DTU

LASSO regularization

Add the following term to the objective function

$$R\left(\sum_{i\in\mathcal{I}}\left(|\alpha_i^a|+|\alpha_i^d|+|\alpha_i^{\overline{P}}|+|\alpha_i^{\underline{P}}|\right)\right)$$

- Penalize the affine terms α
- Feature selection & better prediction capabilities
- Choose R by cross validation

Solution Method: Two-step Procedure

Non-linear due to the complementarity constraints

- Step 1: *L-penalization* Solve a linear relaxation of the estimation problem
- Step 2: *Refining problem* Recompute the parameters defining the utility function with the parameters defining the constraints of the lower-level problem fixed at the values estimated in Step 1

Motivation ⊙	Estimating The Bid	Solution Method	Results
L-Penaliza	tion		
Penalize vio	lations of the complem	entarity conditions	
$ \begin{array}{l} \text{Minimiz} \\ x,\lambda \\ A\mathbf{x} = \mathbf{b} \end{array} $	$\begin{array}{ll} xe \ cx & \implies \\ > 0 + \lambda > 0 \end{array}$	$\underset{x,\lambda}{\operatorname{Minimize}} \operatorname{cx} + \operatorname{L}(\operatorname{Ax} -$	$b + \lambda$)

- Parameter L penalizes violations of the complementarity constraints
- Optimality is not guaranteed practical usefulness proved
- Cross-validation to choose L

Motivation	Estimating The Bid	Solution Method	Results
		00000	

subject to the following constraints:

- 1 Upper-level constraints
- 2 Lower-level constraints
 - Primal feasibility
 - Dual feasibility
 - Stationary conditions

Motivation	Estimating The Bid	Solution Method	Results
	_		

Refining problem

- Reformulate the inverse problem using primal-dual formulation
- In the lower-level, fix the parameters appearing in the constraints
- Substitute the estimated load (x) by the data (x^{meas})

```
Minimize w \epsilon = Weighted Duality Gap
```

subject to

Primal Ojective = Dual Objective + ϵ

Primal Constraints

Dual Constraints

Motivation	Estimating The Bid	Solution Method	Results
0	00000	00000	000000

Refining problem

DTU

$$\underset{\psi_{t}^{\overline{P}}, \psi_{t}^{\underline{P}}, \psi_{t}^{\underline{P}}, \psi_{b,t}, \epsilon_{t}}{\text{Minimize}} \sum_{t \in \mathcal{T}} \boldsymbol{w}_{t} \epsilon_{t}$$
(1)

$$\sum_{b\in\mathcal{B}} a_{b,1} x_{b,1}^{meas'} - p_1 \sum_{b\in\mathcal{B}} x_{b,1} + \epsilon_1 = \sum_{b\in\mathcal{B}} \left(\frac{\overline{P}_1 - \underline{P}_1}{B}\right) \overline{\psi}_{b,1}$$
(2a)
$$\sum_{b\in\mathcal{B}} a_{b,t} x_{b,t}^{meas'} - p_t \sum_{b\in\mathcal{B}} x_{b,t} + \epsilon_t = \sum_{b\in\mathcal{B}} \left(\frac{\overline{P}_t - \underline{P}_t}{B}\right) \overline{\psi}_{b,t} + \left(r_t^u - \underline{P}_t + \underline{P}_{t-1}\right) \lambda_t^u + \left(r_t^d + \underline{P}_t - \underline{P}_{t-1}\right) \lambda_t^d \quad t \in \mathcal{T}_{-1}$$
(2b)

(Stationary conditions lower-level problem) (2c)

- $egin{aligned} & a_{b,t} \geq a_{b+1,t} & t \in \mathcal{T} & (2d) \ & \lambda^u_t, \lambda^d_t \geq 0 & t \in \mathcal{T}_{-1} & (2e) \end{aligned}$
- $\psi_t^{\overline{P}}, \psi_{\overline{t}}^{\underline{P}}, \underline{\psi}_{b,t}, \overline{\psi}_{b,t} \ge 0 \qquad \qquad t \in \mathcal{T}$ (2f)

Motivation	Estimating The Bid	Solution Method	Results
			00000

Results

- Data of price-responsive households from Olympic Peninsula project from May 2006 to March 2007.
- The price was sent out every 15 minutes to 27 household
- Decisions made by the home-automation system based on occupancy modes and on price

Figure 3.2. Invensys GoodWattsTM System Components

Dev

Motivation	Estimating The Bid	Solution Method	Results ○○●○○○
Results			
Cross-valida	ation: In a rolling-horizon	manner compute the MAF	ЪЕ
 Penaliz 	ation parameter L		

- Regularization parameter R
- Forgetting factor E

Motivation	Estimating The Bid	Solution Method	Results ○○●○○○
Results			
Cross-validation	: In a rolling-horizon	manner compute the MAF	ΡE

- Penalization parameter L
- Regularization parameter R
- Forgetting factor E

Motivation	Estimating The Bid	Solution Method	Results
			000000

Results

Prediction capabilities of different benchmarked methods

	MAE	RMSE	MAPE
ARX	22.17692	27.50130	0.2752790
Simple Inv	44.43761	54.57645	0.5858138
Inv Few	16.92597	22.27025	0.1846772
Inv All	17.55378	22.39218	0.1987778

Motivation	Estimating The Bid	Solution Method	Results
0	00000	00000	000000
Roculte			
ncoullo			

Estimated marginal utility for the pool of price-responsive consumers

Summary of the talk

- We capture the **price-response** of the pool of flexible consumers in the form of a **market bid** using price-consumption data.
- We propose a **generalized inverse optimization framework** to estimate the market bid that best captures the price-response of the pool.
- We use machine-learning techniques on a **set of features** to explain the flexibility of the pool
- We test our methodology using data from a real-world experiment.

Thank you for listening!

Questions?

A preprint of the associated scientific article can be found in arXiv: http://arxiv.org/abs/1506.06587

The product of two continuous variables $(Ax - b)\lambda = 0$ can be reformulated [Siddiqui and Gabriel 2013]:

$$y_1 = 0.5((Ax - b) + \lambda)$$
 (3a)

$$y_2 = 0.5 \left((Ax - b) - \lambda \right) \tag{3b}$$

$$y_1^2 - y_2^2 = (Ax - b)\lambda = 0$$
 (3c)

Noting that $Ax - b \ge 0$ and $\lambda \ge 0$:

$$y_1 = 0.5 \left((Ax - b) + \lambda \right) \tag{4a}$$

$$y_2 = 0.5 \left((Ax - b) - \lambda \right) \tag{4b}$$

$$y_1 = -|y_2| \tag{4c}$$

The absolute value as it is now is not linear. It can be **approximated** by introducing two positive variables y_{2t}^+ and y_{2t}^-

$$y_1 = 0.5 \left((Ax - b) + \lambda \right) \tag{5a}$$

$$y_2^+ - y_2^- = 0.5 ((Ax - b) - \lambda)$$
 (5b)

$$y_1 = -(y_2^+ + y_2^-) \tag{5c}$$

$$y_2^+, y_2^- \ge 0$$
 (5d)

Penalizing $L(y_2^+ + y_2^-)$ in the objective function.

$$y_1 = 0.5 ((Ax - b) + \lambda)$$
 (6a)

$$y_2^+ - y_2^- = 0.5 ((Ax - b) - \lambda)$$
 (6b)

$$y_1 = -(y_2^+ + y_2^-)$$
 (6c)

$$y_2^+, y_2^- \ge 0$$
 (6d)

Penalizing $L(y_2^+ + y_2^-)$ in the objective function.

Make a few substitutions and finally obtain that

DTU

$$y_2^+ = 0.5 (Ax - b)$$
 (7a)
 $y_2^- = 0.5 (\lambda)$ (7b)

Equivalent to penalizing $L(Ax - b) + \lambda$ in the objective function