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Optimal bidding

- Price-responsive units (households)

- Too small to participate in the
Wholesale electricity market

November 2279, 2016 5/32



Introduction

(o] Jelele]

Optimal bidding

Aggregator

Price

Energy

November 2279, 2016

Day-ahead
market

Real-time
market

5/32



Optimal bidding

Day-ahead Real-time
market market
‘ |
12:00 00:00 45’
; Deployment
Decision _/L
e
Now &

November 2279, 2016 6/32




The data

e Data of price-responsive households from Olympic Peninsula project
from May 2006 to March 2007.

e The price was sent out every 15 minutes to 27 household

¢ Decisions made by the home-automation system based on occupancy
modes and on price

i E \% s Energy Management System

Invensys.

(GoodWatts Web Site, Courtesy Inve

Figure 3.2. Invensys GoodWatts™ System Components
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Two approaches

Stochastic Optimal Inverse
optimization bidding optimization

J. Saez-Gallego, M. Kohansal, J. Saez-Gallego, J. M. Morales, M.
A. Sadeghi-Mobarakeh and Zugno, and

J. M. Morales H. Henrik,

“Optimal Price-energy Demand Bids “A data-driven bidding model for a
for Aggregate Price-responsive cluster of price-responsive
Loads” consumers of electricity”
Submitted to /EEE Transactions on In: IEEE Transactions on Power
Smart Grid, 2016 Systems, February, 2016

November 2279, 2016 8/32



Paper C. Optimal Price-energy Demand Bids for
Aggregate Price-responsive Loads

A cluster of price-responsive units
under variable price of electricity

The goal

Obtain optimal bid in the day-ahead
market that maximizes the profit of
the retailer
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Paper C. Optimal Price-energy Demand Bids for
Aggregate Price-responsive Loads

e { £ )
[

revenue purchase purcha;e

Total profit =  from - costinthe - Ccost/selling
selling day ahead profit in the

real-time

¢ No risk considered: analytic solution given

¢ Risk constraints: limit the probability of purchasing certain fraction of
the load in the real-time market.
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Paper C. Optimal Price-energy Demand Bids for
Aggregate Price-responsive Loads
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Paper C. Optimal Price-energy Demand Bids for
Aggregate Price-responsive Loads

Hour 20

¢ Risk-unconstrained bidding
results in flat curve with
highest expected profits

¢ Risk-averse bids are more
steep with lower expected
profits and lower variance
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Basics of inverse optimization

Traditional constrained optimization problems find the decision variable x that
maximize (or minimize) a function
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Basics of inverse optimization

Traditional constrained optimization problems find the decision variable x that
maximize (or minimize) a function

What is the solution?

Maximize 3x + y

X,y
Subject to
X+y<7
0<x<5
0<

The solutionis x* =5, y* =2
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Basics of inverse optimization
What are the values of la and | b such that x* =5 and y* = 27

Maxiinize ax +y*
a,
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Basics of inverse optimization

Inverse optimization

What are the values of la and | b such that x* =5 and y* = 27

Maxiinize ax +y*
a,

Subject to

>
*
+
<
*
A
o

0<x*<5
o<y

\

The solutionisa>1and b=7.
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B: Inverse optimization
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Optimal bidding

The bid represents the behavior
Price of the aggregated pool in the
market.

Energy

Parameters 0 of the bid:
e Marginal utility ( ap ;)
e Maximum and minimum power consumption (P;,P;)
e Pick-up and drop-off limits ( r”,rf) (equivalent to ramp limits)
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The Bid

Price

Energy
Unit-like problem
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B: Inverse optimization
000008000

The Bid

Price e The energy assigned to each block is xp;

e And the total estimated load as
X' = Py 4 Y pei Xoit

Ener Max ap tXp.t — price X
ay o Z b,tXb,t — P tz b,t
Unit-like problem teT \beB beB
Subject to

d tot tot u
— I SXp =X S

P — P,

0 < Xxp; <
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The Estimation Process
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The Estimation Process

Price

Energy

Time | Price Load

Estimation problem:
inverse optimization and
bilevel programming

Upper-level problem

Minimize |x-x™%|
x,0

8 = {a,,r,r*,P,P}
AB<b

Lower-level

roblem
External Info.
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B: Inverse optimization
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Results

Cross-validation: In a rolling-horizon manner

© Compute optimal bid
@ Input the price
©® Error: estimated load vs actual load.

Validation
| Training (3 months) | | 7y ae)

1 I I >
12:00 | 00:00 00:00
Market| *
clearing
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Results

Prediction capabilities of different benchmarked methods
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MAPE

ARX 0.2752
Inv Few 0.1846
Inv All - 0.1987
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Paper D: J. Saez-Gallego and J. M. Morales,
“Short-term Forecasting of Price-responsive Loads Using Inverse Opti-
mization”. Under review in IEEE Transactions on Smart Grid, 2016.
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D: Load Forecasting
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Energy demand forecasting as solution

e Plan grid expansion

¢ Mitigating grid congestions

e Minimizing cost of over or under contracting
Facilitating adoption of demand response
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D: Load Forecasting
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Energy demand forecasting as solution

o A cluster of price-responsive
buildings is considered

e Economic Model Predictive
Control (EMPC)
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D: Load Forecasting
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Forecasting the demand

Model the hourly demand using a linear problem

Unknown variables:
o the marginal utility up ;

e the bounds of the power
P, Py

Available historical information:
e measured load xp ¢
e electricity price price;
e external variables
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D: Load Forecasting
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Forecasting the demand

Model the hourly demand using a linear problem

B
Unknown variables: maxjmize ; Xo,t(Up.t — pricer)
o the marginal utility uj B
« the bounds of the power subjectto Py <> Xpr < Py
P, Py b=1

Available historical information: 0 < Xpt < Epy

e measured load xp ¢
e electricity price price;
e external variables
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D: Load Forecasting
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Forecasting the demand

Challenges | px' A

¢ Non-linear nature of , l
the original problem GIOP: Minimize ;e,
¢ Issues with feasibility subject to b7 +uT, — e = (c — pre)T@, Vi
and optimality (AT DA &))" = (c—pe) Wt
Az, <b vt
e Unable to sol_ve for_ b0 e >0 Vi
small-to-medium sized |
datasets v
X
\ J
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Forecasting the demand
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Case study
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Case study

— Load
21 o
Pmin
. B = InvFor B
£ ARMAX |
- o o, Y
AN
2 i Y
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e -
¢ o — Price
- ~—— Blocks of marginal utiity
£ 94
8
£ 34
&? B T T T T
00:00 12:00 00:00 12:00
BENCHMARK FOR THE TEST SET
No Flex Flex
NRMSE SMAPE NRMSE SMAPE
Persistence 0.1727 0.1509 0.3107 -

ARMAX 0.10086  0.08752  0.13107  0.08426
InvFor 0.10093 0.0886  0.08903  0.07003
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Conclusions
®0

Summary of contributions

¢ Inverse optimization
© Formulation of generalized inverse optimization models
@ Practical solution methods
©® Application to optimal bidding and time series forecasting

O Use historical data and external variables

o A probabilistic framework to determine the total reserve
requirements using a stochastic programming

e All the proposed solutions are benchmark and tested in a realistic
manner
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Conclusions
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Future perspectives

e Further application of inverse optimization modeling: finance,
health care, transport, etc.

e From a mathematical perspective, extend the concept of inverse
optimization to allow

o larger amounts of data
e non-linear relationships
e robust solutions
e Study reserve capabilities of demand under the smart grid
paradigm
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