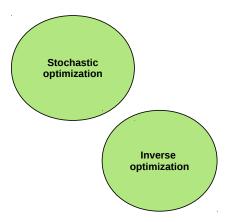
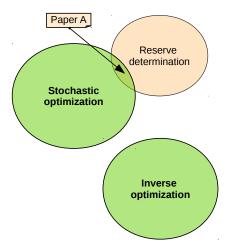
| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
|              |                    |                         |                     |             |

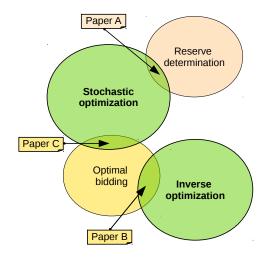
## Inverse Optimization and Forecasting Techniques Applied to Decision-making in Electricity Markets


Javier Saez-Gallego

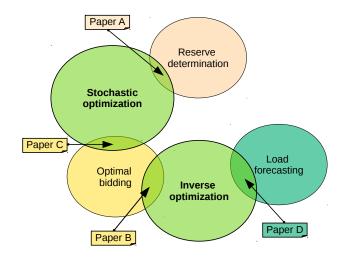
November  $22^{\rm nd},\,2016$ 



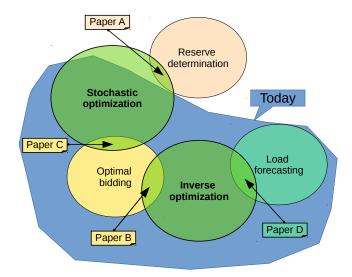

 Introduction
 C: Optimal bidding
 B: Inverse optimization
 D: Load Forecasting
 Conclusion


 00000
 0000
 00000000
 00000000
 000
 000

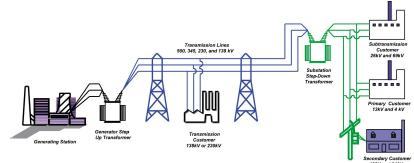



| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
|              |                    |                         |                     |             |



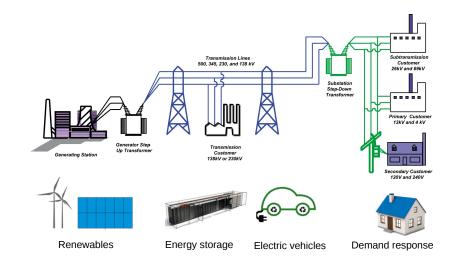

| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
|              |                    |                         |                     |             |



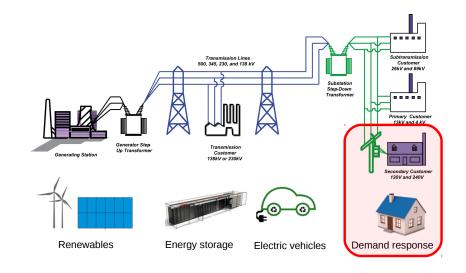

| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
|              |                    |                         |                     |             |



| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
|              |                    |                         |                     |             |






120V and 240V



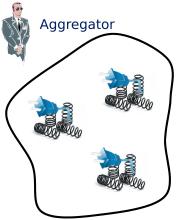


| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
| 00000        | 0000               | 00000000                | 0000000             | 00          |
|              |                    |                         |                     |             |
|              |                    |                         |                     |             |



| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
|              |                    |                         |                     |             |

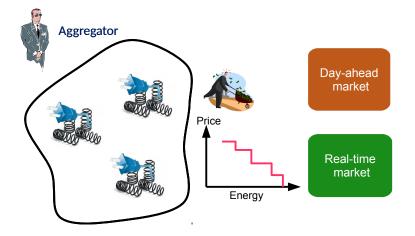


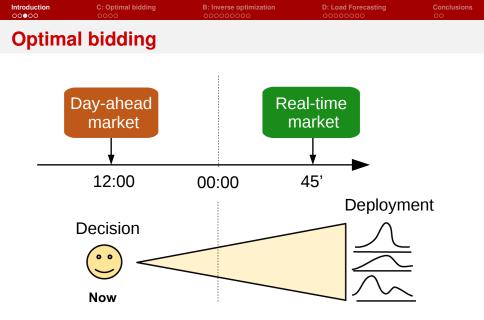

| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
|              |                    |                         |                     |             |
|              |                    |                         |                     |             |





| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
| 00000        |                    |                         |                     |             |
|              |                    |                         |                     |             |


# **Optimal bidding**




- Price-responsive units (households)
- Too small to participate in the Wholesale electricity market

| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
| 00000        |                    |                         |                     |             |
|              |                    |                         |                     |             |

# **Optimal bidding**





| Introduction<br>○○○●○ | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|-----------------------|--------------------|-------------------------|---------------------|-------------|
|                       | _                  |                         |                     |             |

# The data

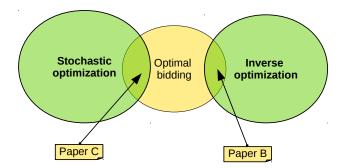

- Data of price-responsive households from Olympic Peninsula project from May 2006 to March 2007.
- The price was sent out every 15 minutes to 27 household
- Decisions made by the home-automation system based on occupancy modes and on price



Figure 3.2. Invensys GoodWatts<sup>TM</sup> System Components

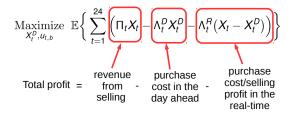
| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
| 00000        |                    |                         |                     |             |
|              |                    |                         |                     |             |

# **Two approaches**

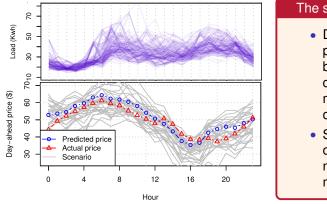


- J. Saez-Gallego, M. Kohansal, A. Sadeghi-Mobarakeh and J. M. Morales "Optimal Price-energy Demand Bids for Aggregate Price-responsive Loads" Submitted to IEEE Transactions on Smart Grid. 2016
- J. Saez-Gallego, J. M. Morales, M. Zugno, and H. Henrik,

"A data-driven bidding model for a cluster of price-responsive consumers of electricity" In: IEEE Transactions on Power Systems, February, 2016

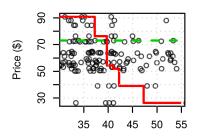



#### The setup


A cluster of price-responsive units under variable price of electricity

#### The goal

Obtain optimal bid in the day-ahead market that maximizes the profit of the retailer




- No risk considered: analytic solution given
- **Risk constraints**: limit the probability of purchasing certain fraction of the load in the real-time market.



#### The solution

- Dynamic price-responsive behavior of consumers is modeled based on scenarios
- Scenarios based on non-parametric models



Hour 20

#### Results

- Risk-unconstrained bidding results in flat curve with highest expected profits
- Risk-averse bids are more steep with lower expected profits and lower variance too



| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
|              |                    | 0000000                 |                     |             |
|              |                    |                         |                     |             |



B: Inverse optimization

D: Load Forecasting

Conclusions

# I HAVE NO IDEA



# WHAT I'M DOING

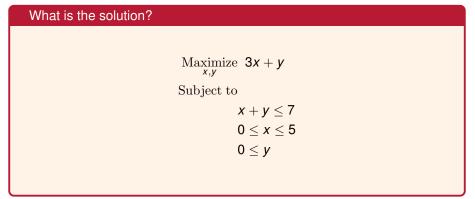
| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
|              |                    |                         |                     |             |

## **Basics of inverse optimization**

*Traditional* constrained optimization problems find the decision variable x that maximize (or minimize) a function

 Introduction
 C: Optimal bidding
 B: Inverse optimization
 D: Load Forecasting
 Conclusions

 00000
 0000
 0000000
 0000000
 00


# Basics of inverse optimization

*Traditional* constrained optimization problems find the decision variable x that maximize (or minimize) a function

| What is the solution? |                                                        |
|-----------------------|--------------------------------------------------------|
|                       | $\underset{x,y}{\text{Maximize }} 3x + y$              |
|                       | x,y<br>Subject to                                      |
|                       | $\begin{array}{l} x+y\leq7\\ 0\leq x\leq5 \end{array}$ |
|                       | $0 \leq x \leq 5$                                      |
|                       | $0 \leq y$                                             |
|                       |                                                        |
|                       |                                                        |

# Basics of inverse optimization

*Traditional* constrained optimization problems find the decision variable x that maximize (or minimize) a function



The solution is  $x^* = 5$ ,  $y^* = 2$ 

 Introduction
 C: Optimal bidding
 B: Inverse optimization
 D: Load Forecasting
 Conclusions

 00000
 0000000
 0000000
 0000000
 00

# Basics of inverse optimization

*Traditional* constrained optimization problems find the decision variable x that maximize (or minimize) a function

| What is the s | olution?                                   |  |
|---------------|--------------------------------------------|--|
|               | $\underset{x,y}{\text{Maximize }} 3 x + y$ |  |
|               | x,y Subject to                             |  |
|               | $x + y \leq 7$                             |  |
|               | $0 \le x \le 5$                            |  |
|               | $0 \leq y$                                 |  |

The solution is  $x^* = 5$ ,  $y^* = 2$ 

| Introduction | C: Optimal bidding | B: Inverse optimization<br>○○○●○○○○○ | D: Load Forecasting | Conclusions |
|--------------|--------------------|--------------------------------------|---------------------|-------------|
| Decise       |                    |                                      |                     |             |

## **Basics of inverse optimization**

#### Inverse optimization

What are the values of **a** and **b** such that  $x^* = 5$  and  $y^* = 2$ ?

Maximize  $a_{a,b}$ Subject to  $x^* + y^* \le b$  $0 \le x^* \le 5$  $0 \le y^*$ 

| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
| Basics       | of inverse o       | optimization            |                     |             |

#### Inverse optimization

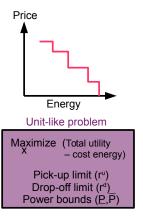
What are the values of **a** and **b** such that  $x^* = 5$  and  $y^* = 2$ ?

Maximize  $a x^* + y^*$ Subject to  $x^* + y^* \le b$  $0 \le x^* \le 5$  $0 \le y^*$ 

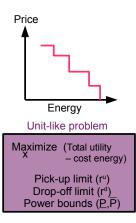
The solution is a > 1 and b = 7.






The bid represents the behavior of the aggregated pool in the market.




#### Parameters $\theta$ of the bid:

- Marginal utility ( *a*<sub>b,t</sub>)
- Maximum and minimum power consumption  $(\overline{P}_t, \underline{P}_t)$
- Pick-up and drop-off limits ( $r_t^u, r_t^d$ ) (equivalent to ramp limits)

| Introduction | C: Optimal bidding | B: Inverse optimization<br>○○○○○●○○○ | D: Load Forecasting | Conclusions |
|--------------|--------------------|--------------------------------------|---------------------|-------------|
| The Bid      |                    |                                      |                     |             |



| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
| The Rid      |                    |                         |                     |             |



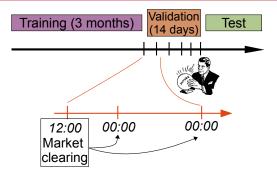
- The energy assigned to each block is x<sub>bt</sub>
- And the total estimated load as  $x_t^{tot} = \underline{P}_t + \sum_{b \in \mathcal{B}} x_{b,t}$

$$\begin{split} & \underset{x_{b,t}}{\operatorname{Max}} \; \sum_{t \in \mathcal{T}} \left( \sum_{b \in \mathcal{B}} a_{b,t} x_{b,t} - \mathsf{price}_t \sum_{b \in \mathcal{B}} x_{b,t} \right) \\ & \text{Subject to} \\ & - r_t^d \leq x_t^{tot} - x_{t-1}^{tot} \leq r_t^u \\ & 0 \leq x_{b,t} \leq \frac{\overline{P}_t - \underline{P}_t}{B} \end{split}$$

| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------|---------------------|-------------|
|              |                    | 000000000               |                     |             |
|              |                    |                         |                     |             |

# **The Estimation Process**

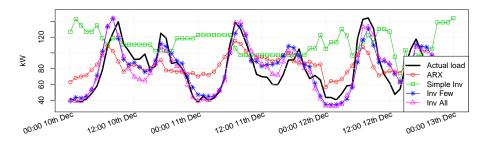



| Time           |                    |                                | External Info. |
|----------------|--------------------|--------------------------------|----------------|
| t <sub>1</sub> | price₁<br>price₂   | x <sub>1</sub> <sup>meas</sup> | Z <sub>1</sub> |
| t2             | price <sub>2</sub> | x <sub>2</sub> <sup>meas</sup> | Z2             |
|                |                    |                                |                |

| Introduction   | <b>C: 0</b><br>000 | <b>ptimal bidding</b> | B: Inverse optimi<br>○○○○○○●○○ | zation | D: Load Forecasting                                                      | Conclusions |
|----------------|--------------------|-----------------------|--------------------------------|--------|--------------------------------------------------------------------------|-------------|
| The E          | stima              | tion                  | Process                        |        |                                                                          |             |
|                | Price              |                       | ir                             | iverse | tion problem:<br>optimization and<br>programming                         |             |
|                | - 1                | 1_                    |                                |        | Upper-level proble                                                       |             |
|                |                    | 5                     | -                              | Ν      | Minimize  x-x <sup>meas</sup>  <br>x,θ                                   |             |
|                | L                  | Energy                |                                |        | $\theta = \{a_{b}, r^{d}, r^{u}, \underline{P}, \overline{P}\}$          |             |
|                |                    |                       |                                |        | Aθ ≤ b                                                                   |             |
| Time           | Price              | Load                  | External Info.                 |        | Lower-level problem                                                      |             |
| t <sub>1</sub> | price <sub>1</sub> | X <sup>meas</sup>     | Z <sub>1</sub>                 |        | Maximize (Total utility<br>x – cost energy)                              |             |
| t <sub>2</sub> | price <sub>2</sub> | x <sup>imeas</sup>    | Z <sub>2</sub>                 |        | Pick-up limit (r <sup>d</sup> )                                          |             |
|                |                    |                       |                                |        | Drop-off limit $(r^{u})$<br>Power bounds $(\underline{P}, \overline{P})$ |             |

| Introduction | C: Optimal bidding | B: Inverse optimization<br>○○○○○○●○ | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------------------|---------------------|-------------|
| Results      |                    |                                     |                     |             |
|              |                    |                                     |                     |             |

Cross-validation: In a rolling-horizon manner


- Compute optimal bid
- 2 Input the price
- 3 Error: estimated load vs actual load.



| Introduction | C: Optimal bidding | B: Inverse optimization<br>0000000● | D: Load Forecasting | Conclusions |
|--------------|--------------------|-------------------------------------|---------------------|-------------|
|              |                    |                                     |                     |             |

## Results

#### Prediction capabilities of different benchmarked methods



|         | MAPE   |
|---------|--------|
| ARX     | 0.2752 |
| Inv Few | 0.1846 |
| Inv All | 0.1987 |



## Load forecasting

**Paper D**: J. Saez-Gallego and J. M. Morales, "Short-term Forecasting of Price-responsive Loads Using Inverse Optimization". Under review in *IEEE Transactions on Smart Grid*, 2016.



## Energy demand forecasting as solution

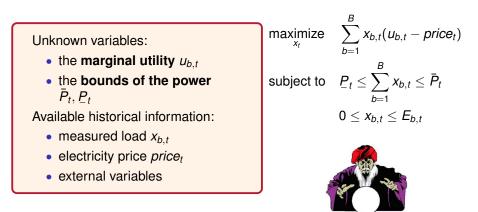


## Energy demand forecasting as solution



- A cluster of price-responsive buildings is considered
- Economic Model Predictive Control (EMPC)

Model the hourly demand using a linear problem


#### Unknown variables:

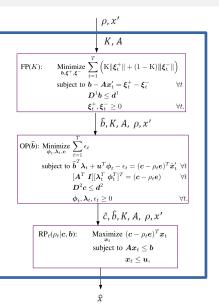
- the marginal utility u<sub>b,t</sub>
- the bounds of the power  $\bar{P}_t, \underline{P}_t$

Available historical information:

- measured load x<sub>b,t</sub>
- electricity price price<sub>t</sub>
- external variables

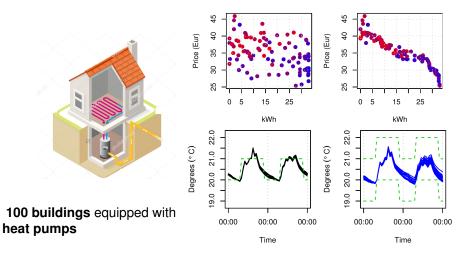
Model the hourly demand using a linear problem




#### Challenges

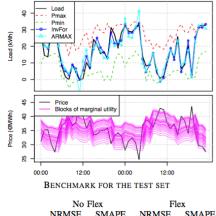
- Non-linear nature of the original problem
- Issues with feasibility and optimality
- Unable to solve for small-to-medium sized datasets

GIOP: Minimize 
$$\sum_{t=1}^{T} \epsilon_t$$
subject to  $b^T \lambda_t + u^T \phi_t - \epsilon_t = (c - \rho_t e)^T x'_t \quad \forall t$ 
$$[A^T I] [\lambda_t^T \phi_t^T]^T = (c - \rho_t e) \quad \forall t$$
$$A x'_t \leq b \qquad \forall t$$
$$\phi_t, \lambda_t, \epsilon_t \geq 0 \qquad \forall t$$


#### Solution

- Iterative estimation process: single linear problems
- Fast to solve (10 seconds)
- Attractive statistical properties: suited for out-of-sample estimation




| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting<br>○○○○○○●○ | Conclusions |
|--------------|--------------------|-------------------------|---------------------------------|-------------|
| Caso         | tudy               |                         |                                 |             |

## Case study



| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting<br>○○○○○○● | Conclusions |
|--------------|--------------------|-------------------------|--------------------------------|-------------|
| -            | _                  |                         |                                |             |

### Case study



|             | NRMSE   | SMAPE   | NRMSE   | SMAPE   |
|-------------|---------|---------|---------|---------|
| Persistence | 0.1727  | 0.1509  | 0.3107  | -       |
| ARMAX       | 0.10086 | 0.08752 | 0.13107 | 0.08426 |
| InvFor      | 0.10093 | 0.0886  | 0.08903 | 0.07003 |
|             |         |         |         |         |

Introduction

C: Optimal bidding

B: Inverse optimization

D: Load Forecastin

Conclusions ●○

## **Summary of contributions**



- Inverse optimization
  - 1 Formulation of generalized inverse optimization models
  - 2 Practical solution methods
  - 3 Application to optimal bidding and time series forecasting
  - 4 Use historical data and external variables



#### Inverse optimization

- 1 Formulation of generalized inverse optimization models
- 2 Practical solution methods
- 3 Application to optimal bidding and time series forecasting
- 4 Use historical data and external variables
- A probabilistic framework to determine the total reserve requirements using a stochastic programming

## Summary of contributions

- Inverse optimization
  - Formulation of generalized inverse optimization models
  - Practical solution methods
  - 3 Application to optimal bidding and time series forecasting
  - 4 Use historical data and external variables
- A probabilistic framework to determine the total reserve requirements using a stochastic programming
- All the proposed solutions are benchmark and tested in a realistic manner

| Introduction | C: Optimal bidding | B: Inverse optimization | D: Load Forecasting | Conclusions<br>○● |
|--------------|--------------------|-------------------------|---------------------|-------------------|
| Future p     | erspectives        |                         |                     |                   |
| -            | _                  | $\sim$                  | HHH                 |                   |

- Further application of inverse optimization modeling: finance, health care, transport, etc.
- From a mathematical perspective, extend the concept of inverse optimization to allow
  - larger amounts of data
  - non-linear relationships
  - robust solutions
- Study reserve capabilities of demand under the smart grid paradigm

# Thank you for listening

